Physics 12-01 Einstein's Postulates and Time Dilation Name: **Definitions** Event • Physical ______ in a certain ______ at a certain ______. **Reference Frame** Coordinate _____ (x, y, z) and _____ • Inertial Reference Frame Reference frame where _____ Law of _____ is _____ • • No _____ No **Einstein's Postulates** The Relativity Postulate • The laws of ______ are the ______ in _____ inertial reference frame. The Speed of Light Postulate • The speed of light in a ______, measured in ______ inertial reference frame, ______ has the ______ value of c, no matter how fast the ______ of light and the ______ are moving ______ to each other. Consequences of Relativity Postulate _____ inertial reference frame is as _____ as any other. • You ______ say any reference frame is ______ at _____ There is no ______ velocity or rest, only velocity ______ to the ______ frame. Explanation of Speed of Light Postulate The observer on the truck _____ speed of _____ to be _____ since he is ______ the light. 15 m/s Logic says the observer on the ____ measures the speed of _____ to be _____, but he doesn't. The observer on the ______ measures speed of light to be ______ also. Verified by _____ many times. • Simultaneous Just because two events ______ simultaneous to ______ observer does not mean ____ observes see the ______ simultaneously Time Dilation Astronaut measures _____ • by aiming a ______ at a mirror. The light ____ Ending Beginning event event from the mirror and hits a Observer on earth The person on _____ says that the time of the event must be ______ because she sees the laser beam go ______. $\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{v^2}{a^2}}}$

• Where Δt_0 = proper time measured in a reference frame at rest relative to the event, Δt = dilated time measured in a reference frame moving relative to the event, v = relative speed between the observers, c = speed of light in a vacuum

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Let's say the USS Enterprise's 1/3 impulse speed is one-quarter the speed of light. If Spock, in the ship, says the planet will blow up in 10 minutes, how long does the away team have to beam up?

Picard is on Rigel 7 and needs to go to Earth 776.6 light-years away, but the Enterprise's warp drive is broken. If full impulse is ³/₄ the speed of light, how long will a Rigelian think it will take the Enterprise to get to Earth?

How long will the Enterprise's crew think it will take?

Homework

- 1. Which of Einstein's postulates of special relativity includes a concept that does not fit with the ideas of classical physics? Explain.
- 2. Is Earth an inertial frame of reference? Is the Sun? Justify your response.
- 3. When you are flying in a commercial jet, it may appear to you that the airplane is stationary and the Earth is moving beneath you. Is this point of view valid? Discuss briefly.
- 4. Does motion affect the rate of a clock as measured by an observer moving with it? Does motion affect how an observer moving relative to a clock measures its rate?
- 5. To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer moving with the process? Which observer measures proper time?
- 6. (a) What is γ if v = 0.100c? (b) If v = 0.900c? (OpenStax 28.2) **1.00504, 2.29**
- 7. Particles called π -mesons are produced by accelerator beams. If these particles travel at 2.70 × 10⁸ m/s and live 2.60 × 10⁻⁸ s when at rest relative to an observer, how long do they live as viewed in the laboratory? (OpenStax 28.3) **5.96** × 10⁻⁸ s
- 8. Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at 0.980c, and it lives 1.24×10^{-8} s when at rest relative to an observer. How long does it live as you observe it? (OpenStax 28.4) **6**. **23** × **10**⁻⁸ s
- 9. A neutral π -meson is a particle that can be created by accelerator beams. If one such particle lives 1.40×10^{-16} s as measured in the laboratory, and 0.840×10^{-16} s when at rest relative to an observer, what is its velocity relative to the laboratory? (OpenStax 28.5) **0.800c**
- 10. If relativistic effects are to be less than 1%, then γ must be less than 1.01. At what relative velocity is γ = 1.01? (OpenStax 28.7) **0.140c**
- 11. (a) At what relative velocity is $\gamma = 1.50$? (b) At what relative velocity is $\gamma = 100$? (OpenStax 28.9) **0.745c**, **0.99995c**